Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Feng Li,* Chun-Xiang Wang, Yong Li, Ding-Jian Cai and You-Jun Xiao

School of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China

Correspondence e-mail:
jxlzfeng@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.024$
$w R$ factor $=0.081$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[di- μ_{4}-1,4-benzenedicarboxylato-μ_{6}-succinato-dineodymium(III)]

The title compound, $\left[\mathrm{Nd}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\right]_{n}$, was synthesized by hydrothermal synthesis. The Nd atom is coordinated by four O atoms from four 1,4-benzenedicarboxylate ligands and four O atoms from three succinate anions, in a distorted square-antiprismatic coordination geometry. The antiprisms are bridged by the 1,4 -benzenedicarboxylate and succinate ligands, forming a three-dimensional network. The succinate ion is located on a centre of inversion.

Comment

The title compound, (I), is isostructural with its $\left[M_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\right]_{n}[M=\mathrm{Gd}$ (Wang \& Li, 2005) or Dy (Li \& Wang, 2005)] analogues. As illustrated in Fig. 1, the Nd atom possesses square-antiprismatic coordination geometry (Table 1), in which the $\mathrm{Nd}-\mathrm{O}$ bond distances range from 2.3306 (18) to 2.6225 (17) Å, with an average bond distance of $2.464 \AA$, similar to those found in the previously reported isostructural complexes.

(I)

In (I), the succinate ligand is located on an inversion centre and functions as an octadentate ligand, bis-chelating two Nd atoms with each O atom bridging to another Nd atom. In this mode, the Nd atoms are linked into a two-dimensional polymeric sheet parallel to the $a b$ plane. These sheets are in turn bridged via 1,4-benzenedicarboxylate ligands, forming a threedimensional framework.

Experimental

A mixture of $\mathrm{NdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad(1.00 \mathrm{mmol}, 0.36 \mathrm{~g})$, 1,4-benzenedicarboxylic acid $(0.55 \mathrm{mmol}, 0.09 \mathrm{~g})$, succinic acid $(0.51 \mathrm{mmol}$, $0.06 \mathrm{~g}), \mathrm{NaOH}(2.00 \mathrm{mmol}, 0.08 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{ml})$ was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h . The resulting red column-like crystals of (I) were filtered off and washed with water and acetone. Yield: 43% based on Nd.

Crystal data

$\left[\mathrm{Nd}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\right]$
$M_{r}=732.78$
Orthorhombic, Pbca
$a=14.0586$ (3) \AA
$b=6.9445$ (1) \AA
$c=21.9664$ (5) \AA
$V=2144.58(7) \AA^{3}$
$Z=4$
$D_{x}=2.270 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.385, T_{\text {max }}=0.422$
12052 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.081$
$S=1.01$
2579 reflections
155 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 512
reflections
$\theta=3.3-26.7^{\circ}$
$\mu=4.86 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Column, red
$0.20 \times 0.20 \times 0.18 \mathrm{~mm}$

2579 independent reflections 2433 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-18 \rightarrow 17$
$k=-9 \rightarrow 9$
$l=-25 \rightarrow 28$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0672 P)^{2}\right. \\
& +1.0685 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.98 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.79 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0076 (3)

Table 1
Selected bond lengths (\AA).

$\mathrm{Nd}-\mathrm{O} 1$	$2.3858(18)$	$\mathrm{Nd}-\mathrm{O} 5$	$2.6225(17)$
$\mathrm{Nd}-\mathrm{O} 2^{\mathrm{i}}$	$2.3306(18)$	$\mathrm{Nd}-\mathrm{O}^{\text {iv }}$	$2.521(2)$
$\mathrm{Nd}-\mathrm{O}^{\mathrm{ii}}$	$2.4042(19)$	$\mathrm{Nd}-\mathrm{O}^{\mathrm{in}}$	$2.5639(19)$
$\mathrm{Nd}-\mathrm{O}^{\mathrm{iii}}$	$2.3931(18)$	$\mathrm{Nd}-\mathrm{O}^{\mathrm{v}}$	$2.486(3)$

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $\quad x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii)
$-x+\frac{3}{2},-y+1, z+\frac{1}{2}$; (iv) $-x+\frac{3}{2}, y-\frac{1}{2}, z ;$ (v) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.
H atoms were included in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

Figure 1
The coordination environment of the Nd atom of (I), with the atomnumbering scheme, showing displacement ellipsoids at the 45% probability level. [Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $x, \frac{1}{2}-y$, $\frac{1}{2}+z$; (iii) $\frac{3}{2}-x, 1-y, \frac{1}{2}+z$; (iv) $\frac{3}{2}-x, y-\frac{1}{2}, z ;(\mathrm{v}) \frac{3}{2}-x, y+\frac{1}{2}, z ;$ (vi) $1-x$, $1-y, 1-z$.]

This project was supported by the Jiangxi Provincial Educational Foundation (grant No. 2005-146) and the Jiangxi University of Science and Technology Foundation (grant No. 2003-1).

References

Bruker (2004). SMART (Version 6.0), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Li, Z.-F. \& Wang, C.-X. (2005). Acta Cryst. E61, m2689-2690.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, C.-X. \& Li, Z.-F. (2005). Acta Cryst. E61, m2212-2213.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

